
FreeMessage
Secure Messaging by GMX and WEB.DE

Encryption White Paper
September 2016

Contents

1 Introduction and Intention

2 Terms and Nomenclature

3 Trust

4 Keys

5 Message Exchange

6 Group Messages

7 File Transfer

8 Client Implementation

9 Limitations

10 Source Code

11 Conclusion  

�2 FreeMessage Encryption White Paper, September 2016

1 Introduction and Intention

Nowadays, billions of smartphone users share their most personal

information online using private messaging apps. However, most messaging

apps fail at protecting the content shared by users.

It is our firm belief this content shared on messaging apps is worthy of

protection against unauthorized access by 3rd parties as well as protection

against loss of data. Adding extra layers of data protection in messaging

apps has strong implications on user experience. We are convinced, that for

end-to-end encrypted messaging products to become ubiquitous, the friction

generated by the use of encryption protocols needs to be eliminated. It is

imperative, that encryption happens almost unconsciously, as we cannot

assume users to have or acquire either any technological knowledge or

tolerate inconvenience or lack of functionality imposed by encryption.

FreeMessage was designed with simplicity and strong protection of user

data in mind. The FreeMessage apps implement a custom encryption

protocol designed to satisfy both users’ needs for privacy and a seamless

user experience. The protocol’s design prevents 3rd parties as well as 1&1

Mail & Media as the operator of FreeMessage from ever being able to access

message contents in plaintext.

This paper explains the technical procedure to achieve end-to-end encryption

on FreeMessage and describes the underlying trade-offs regarding privacy

and functionality.

�3 FreeMessage Encryption White Paper, September 2016

2 Terms and Nomenclature

Key block: Package used for securely transmitting encrypted secret keys

FreeMessage key store: Server-side component storing and distributing

users’ public-keys.

Message directory: Server-side component storing users’ encrypted

message history.

Document manager: Blob store to enable efficient exchange of files such as

images and videos.

JID: Internal ID identifying the user account on FreeMessage.

3 Trust

Public keys obtained from our FreeMessage keystore will be signed by

FreeMessage and implicitly considered as trustable. Users of FreeMessage

have the possibility to verify each other’s public key to rule out a man-in-the-

middle attack. FreeMessage obtains the correct public key for a given user

ID. If a user communicates without authenticating her chat partner’s public

key, she has to trust the FreeMessage key store to hand out the right key. In

all cases, users have to trust the hardware and operating system they are

using. Specifically there are Android and iOS clients available for

FreeMessage, thus users have to trust Google and Apple that

• the app executables deployed via the respective app store are

authentic.
• any decrypted or displayed content is not stored anywhere else outside

the app’s sandbox without user consent (this specifically concerns

functionality like “Google Now on Tap”).
• keys stored on the device are not re-distributed by the OS.

�4 FreeMessage Encryption White Paper, September 2016

 The user also has to trust 1&1 Mail & Media that the apps uploaded to Apple

 and Google do not exhibit malicious behaviour such as unsafely handling

 keys or other private data. See section 10 for information on code reviews.

4 Keys

Key Generation

The key-pairs are created on the client app. The client generates its key-pair

by choosing a private key at random and then calculates the corresponding

public key over the Elliptic Curve (Curve25519). To encrypt a message the

client needs its own private key together with the receiver’s public key. For

decrypting the receiving client needs the sender’s public key and its own

private key.

Key Distribution & Verification

The only keys that are valid on FreeMessage, are the ones created by

FreeMessage clients and distributed over FreeMessage key store. This

transaction is protected by SSL and the server’s certificates which are

already trusted by the client through the operating system’s key chain. The

client will only download keys from the FreeMessage key store over this

secure communication channel. This prevents keys from being changed on

the way to the client.

Additionally users are able to verify key integrity themselves directly with

their chat partner. This happens by comparing the key hashes over a second

communication channel, ideally in person. A checked key can be marked

“verified” on the local device. There is no chain of trust. Only this one key

from this user will be shown as “verified”. The name shown to the user in the

chat and during key validation is from her local phone book. Therefore the

other person has no way of changing the name from the server side.

�5 FreeMessage Encryption White Paper, September 2016

5 Message Exchange

To encrypt messages, the clients creates a 256 bit random secret key k and

a 128 bit random initial vector IV. Then the message is encrypted using k

and IV with AES256 in cipher block chaining mode: c = AES256-CBC(k, IV,

message). To allow validation of this message by the receiving client the

sending client will also generate another random secret key mk. With this key

it computes the message authentication code mac = HMAC-SHA256(IV || c,

mk). In this case a||b means concatenation a and b.

Then the random key k and the key for the message authentication code mk

will be encrypted with Curve25519 for the receiver. This encryption works by

generating the derived key from the users private key and the receivers

public key as follows: Alice and Bob both have generated a 256 bit private

key dA and dB as well as one public key QA = dA * G and QB = dB * G

respectively on their device . To derive a master key to exchange messages 1

between Alice and Bob, Alice calculates: QB * dA = dB * G * dA and Bob

calculates: QA * dB = dA * G * dB. After that they will both have a shared

secret from which the master key can be derived. To prevent an attacker

from being able to simply replay the sent message to the sender, the

communication direction is added to the master key. To generate the master

key and the message authentication code key this shared secret and the

communication direction are appended and used as input to an PBKDF2 with

a fixed salt and an output length of 512 bit. The message authentication

code key is being used to ensure the keyblock package is not being altered.

We generate a 256 bit master key kek = PBKDF2(JID1|JID2|

Base64(shared_secret)) and a 256 bit message authentication code key

mk2.

After generating the master key, Alice also creates a 128 bit initial vector IV2.

Then the encryption key and the message authentication code are encrypted

using the master key and this initial vector: ck = AES256-CBC(kek, IV2, k +

 https://cr.yp.to/ecdh/curve25519-20060209.pdf - Note that the operation denoted by * is an operation on the elliptic curve as described in the Bernstein's 1

paper and must not be confused with a standard multiplication.

�6 FreeMessage Encryption White Paper, September 2016

https://cr.yp.to/ecdh/curve25519-20060209.pdf

mk). The new message authentication code mack is computed as follows:
mack = HMAC-SHA256(IV2 || ck, mk2).

From this data the client needs to send: IV, IV2, mac, mack, c, ck. This is split in

two actual messages. Message one will contain IV2, mack and ck. Message

two will contain a reference to message one (the so called keyblock id) and

also IV, mac and c. With this data and its private key and the senders public

key, the client will verify the authentication of the message by checking the

mack. If the message authentication code is valid the client can decrypt the

original message. To save storage the client sends all messages Base64

encoded instead of using hex encoded messages. The message format is as

follows:

<message to="receiver" id="...">

 <keyblock id="3c964b439..." xmlns="urn:1and1:xmpp:encrypted">

 <key jid="receiver" senderKeyId="0" receiverKeyId="1">

 <ciphertext>50cbc4c29...</ciphertext>

 <iv>2f7e6bc1e...</iv>

 <mac>8174cac91...</mac>

 </key>

 </keyblock>

 <nopush xmlns="urn:1and1:xmpp"/>

</message>

<message to="receiver" id="..." type="chat">

 <text keyblock="3c964b439..." xmlns="urn:1and1:xmpp:encrpyted">

 <ciphertext>9e615c66b...</ciphertext>

 <iv>f80b5ad4b...</iv>

 <mac>41582af32...</mac>

 </text>

</message>

The splitting into two messages allows to save space in the message

directory and also to reduce performance impact on the sending and

receiving clients. The first message containing the keyblock can be

referenced by the sender for consecutive messages. For this the sending

�7 FreeMessage Encryption White Paper, September 2016

client only sends the second message, omitting the first one. The second

message needs to contain a previously sent keyblock id. With this keyblock

id the receiving client can use its local history or query the server history for

the matching keyblock and use it to decrypt the message. Since keyblocks

are not actual messages that are presented to the user they can not be

deleted by the user. The client should send a new keyblock when one of the

following conditions is met:

• time since last key block is more than 24 hours

• the receiving user(s) have changed

• one or more of the receiving users have changed their private key or the

user has sent more than 100 messages using the same keyblock

The client will generate a different initial vector IV for each message that it

sends out.

The FreeMessage encryption protocol provides limited deniablity: The sender

and the receiver can generate the same initial key - no one else can generate

that exact key. So a particular message encrypted with this key can only be

from one of the chat partners. But there is no proof that it was actually sent

by any one of them. Theoretically both of them have access to the same key,

and both of them could have written the message. Because of this, no chat

partner can prove that the other person wrote the message. The server-side

message directory component knows which of the users is the actual

sender. Yet this is no cryptographic proof that the message was sent by this

person.

In order to mitigate risks from packet drop or replay attacks, the entire

communication between the client and the server is be encrypted using TLS.

6 Group Messages

�8 FreeMessage Encryption White Paper, September 2016

Groups are created by a single user. This user becomes the admin of the

group. All groups are invite only and the admin is the only person that can

invite other users into a group. Every user can query a list of his joined

groups from the server. There is no functionality to query for open groups,

since a user can not join without invitation. Joining is not optional, each user

that is added to a group by the admin immediately becomes a member of

the group. The admin is also the only person who can remove people from

the group. All users have the opportunity to leave a group. All messages send

to a group will be distributed to all participants. This is achieved by a server-

side module iterating over all participants and sending copies of the original

message to each member.

For group messaging the same approach as for Message encryption is used,

only that there is one key entry in the keyblock per user. The key package for

the user can be found by taking the key entry that contains the user’s JID.

The sending client can decrypt the message by taking one key entry at

random. It can generate the key with each of them.

Implications of encryption to group chats:

• When a user is added to a group she will not get any old messages - akin

to a real conversation, participants who joined later can not know what

was spoken before.
• Even though the client constantly validates members and keys, there is the

possibility, that the message can not be decrypted bye one or more clients.
• There is no explicit trust level for a group of users.

The client will get notifications if another user joins or leaves the group.

When the client receives one of those notifications, it needs to refresh the

participants list and sent a new key package along with the next message.

When someone is removed from the group or leaves the group, the server

will immediately stop routing messages to this user.

7 File Exchange

�9 FreeMessage Encryption White Paper, September 2016

All files sent on FreeMessage are encrypted symmetrically with 256 bit

encryption key k and a 128 bit initial vector IV generated at random by the

client. Once encrypted, the file is uploaded into a document manager. The

encryption key k is sent to the receiving client together with a reference and a

store ID to generate a download link. The symmetric key is encrypted like the

key of a regular message. For files in group chats the key will be encrypted

once for every user in the group just like a regular message in a group. Since

the key for the file is sent over a message and all the keyblocks are on the

message, there is no way to tell who is the receiver or sender just by looking

at the file.

There is also a meta field for each file in the message. This meta field

contains the meta data of the file. This allows the client to “display the file” in

the user interface to the user without downloading and decrypting the actual

file. This field will be encrypted just like the file itself with the symmetric key.

The reference ID and store IDs are later used to get a valid download URL

from our server. These IDs will not be encrypted due to the fact that the

server needs to clean up files when messages are deleted from the message

directory.

Images and videos are encrypted just like any other file types - the only

difference here is that the client will also send the thumbnails along with the

actual file. This is needed because FreeMessage can not calculate the

thumbnails on the server from the original since the server would need

access to the (encrypted) file’s content. Downloading only thumbnails of sent

videos and images instead of originals allows for a more responsive UI and

less unnecessary data traffic. The message will contain one file URL for each

thumbnail size we support, and one URL for the original file. The information

about the contained thumbnails and the sizes are encrypted in the meta

data. The client should be able to decrypt all meta data and decide which

thumbnail will fit its screen size. All sent files (thumbnails and original) are

encrypted using different random IVs.

The structure of such a file message containing an images would look as

following:

�10 FreeMessage Encryption White Paper, September 2016

<message to="receiver" id="...">

 <keyblock id="0573143c4..." xmlns="urn:1and1:xmpp:encrypted">

 <key jid="receiver" senderKeyId="0" receiverKeyId="1">

 <ciphertext>d3ac1af6b...</ciphertext>

 <iv>5d4e5529a...</iv>

 <mac>ade8c3aa6...</mac>

 </key>

 </keyblock>

 <nopush xmlns="urn:1and1:xmpp"/>

</message>

<message to="receiver" id="...">

 <filetransfer keyblock="0573143c4..." xmlns="urn:

1and1:xmpp:encrypted">

 <meta>

 <ciphertext>9122d4e4e...</ciphertext>

 <iv>acd6f4ae4...</iv>

 <mac>70b2ccfd1...</mac>

 </meta>

 <file>

 <store>bf7d</store>

 <fileref>0e57</fileref>

 <iv>ba06ae9ea...</iv>

 <mac>6c7a84f89...</mac>

 <meta>

 <ciphertext>9122d4e4e...</ciphertext>

 <iv>acd6f4ae4...</iv>

 <mac>70b2ccfd1...</mac>

 </meta>

 </file>

 <file>

 <store>7529</store>

 <fileref>d7ba</fileref>

 <iv>31af3d64b4e...</iv>

 <mac>bf1827c8d4738...</mac>

�11 FreeMessage Encryption White Paper, September 2016

 <meta>

 <ciphertext>186d9c16eb92...</ciphertext>

 <iv>26fb3d64b4e...</iv>

 <mac>bf1827c8d4738...</mac>

 </meta>

 </file>

 <file>

 <store>8f8b</store>

 <fileref>d78f</fileref>

 <iv>c55afc702...</iv>

 <mac>b6da99fca...</mac>

 <meta>

 <ciphertext>b29d6f1d3...</ciphertext>

 <iv>eca96d84e...</iv>

 <mac>230979195...</mac>

 </meta>

 </file>

 </filetransfer>

</message>

8 Client Implementation

Key Derivation

Android: For AES, HMAC and PBKDF2 FreeMessage uses Spongy Castle, a

Bouncy Castle fork for Android . For compatibility reasons the Donna C 2

implementation for curve 25519 is being used. 3

 https://github.com/rtyley/spongycastle2

 https://code.google.com/p/curve25519-donna/3

�12 FreeMessage Encryption White Paper, September 2016

https://github.com/rtyley/spongycastle
https://code.google.com/p/curve25519-donna/

iOS: For AES-256 and HMAC-SHA256 FreeMessage uses the open source

Common Crypto library provided by Apple . For the elliptic curve the Donna C 4

implementation of curve 25519 is being used. 5

Local Key and Data Storage

For storing sensible data on the clients, data is protected by an additional

encryption layer. This layer is not really a bullet-proof security measure

against stealing the private-key or the data if an attacker gets hold of the

physical device. It is in place to make decrypting sensible user data in such a

scenario significantly harder and more time consuming.

Android

For this encryption of local data FreeMessage uses a access key that can

only be generated on the client. The access key can be created on the device

without user interaction. For this a random secret is generated automatically

on the device when the app is installed for the first time. After that on every

launch the access key will be created with a key derivation function (KDF) -

note that the KDF generates the same access key on every launch: The

random secret and a fixed salt as well as a reasonably high number of

iterations e.g. 10000 are used as inputs to the KDF. This way the access key

can be recalculated each time the app is launched so that the access key is

never stored in permanent memory. The application data will become

unreadable when the app is uninstalled and the random secret is lost. Data is

stored in a SQLite database located in the private data directory. Android

enforces that other apps can not access this directory (if the device is not

rooted).

Additionally the app uses SQLCipher to apply a transparent AES-256 6

encryption on top of the database. All media files are also AES-256 encrypted

 http://www.opensource.apple.com/source/CommonCrypto4

 https://code.google.com/p/curve25519-donna/5

 https://github.com/sqlcipher/android-database-sqlcipher6

�13 FreeMessage Encryption White Paper, September 2016

https://github.com/sqlcipher/android-database-sqlcipher
http://www.opensource.apple.com/source/CommonCrypto
https://code.google.com/p/curve25519-donna/

using the access key mentioned above together with random initial vectors.

Files are stored in the private directory.

The private key will also be protected by the random secret. Most Android

phones offer full disk encryption and most recent models have it turned on

by default. Therefore the data is also protected by an additional layer of

encryption when the phone is turned off or locked. Explicit user input is not

needed to decrypt sensible user data.

Random data on Android is generated using SecureRandom.

iOS

The private key is stored in the iOS Keychain which will grant access only to

our application and only after the device was unlocked at least once after

rebooting. The protection level will also make sure that the private key is not

synced into the iCloud backup. The keychain protection level is called

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly . All files and the core

data database are stored in the private directory of the application. This

private directory is only accessible to the FreeMessage application (unless

the device is jailbroken). In addition to this FreeMessage uses the iOS Data

Protection feature with the

NSFileProtectionCompleteUntilFirstUserAuthentication setting. This will

transparently encrypt and decrypt the files in the private application directory

(and the database). All files will be unavailable when the iPhone restarts,

since the users passcode is also used for encrypting and decrypting. The

files can only be used after the user has entered his passcode for the first

time after starting the device. Also all of the files will be excluded from iCloud

backup by using the NSURLIsExcludedFromBackupKey attribute.

Random data on iOS is generated using /dev/urandom.

9 Limitations

�14 FreeMessage Encryption White Paper, September 2016

FreeMessage uses a central message directory in which all messages for a

certain account are stored in ciphertext which can only be decrypted with the

the intended recipient’s private key (which in turn is stored on the device

only). Storing messages anywhere else than on the client brings along

drawbacks regarding the encryption protocol specifically excluding perfect

forward secrecy for message encryption keys.

Forward secrecy implies that keys that are compromised in the future can’t

be used to decrypt messages sent in the past. While forward secrecy of keys

is an important attribute of a secure messaging system, it has strong

negative implications on a server-side message history and multi-device

usage (i.e. would effectively make those features impossible to build the way

we want them to behave).

We explicitly made this trade-off decision and store encrypted messages in a

server-side directory to account for user demand and behavior. The content

shared over mobile messaging apps is important for users hold on to even in

case of device loss and users expect messaging to work across different

devices and platforms. The message directory allows to implement

seamless and secure multi-device and backup solutions in the future that do

not depend on the unencrypted message history being uploaded by the

client to a potentially insecure cloud storage. Note, that the keys used to

secure the transport layer are still perfectly forward secret.

Messages sent on FreeMessages are secure in the sense that neither 1&1

Mail & Media nor a third party can read the content. However, FreeMessage

is not designed to offer anonymous messaging in the sense that all meta-

data regarding the communication on the system is protected from the

provider or 3rd parties.

10 Source Code

�15 FreeMessage Encryption White Paper, September 2016

Protecting users’ privacy and keeping FreeMessage secure is our biggest

priority. This is why the source code of both clients (as well as the server

components) is being reviewed by external experts on a regular basis. We

are open to further 3rd party audits of our source code. Potential reviewers

can request access by sending an email to review@freemessage.com.

 

Summary reports of past audits will be made available on freemessage.com

shortly.

11 Conclusion

All content (regular messages, and files) shared on FreeMessage between

any number of users is protected by state-of-the-art end-to-end encryption.

Messages are protected, such that no 3rd party (1&1 Mail & Media as the

provider, government institutions or attackers) can access the messages’

contents. The relevant keys to decrypt the content are generated on the

device. They never leave the device and are not accessed by 1&1 Mail &

Media in any way. Users have the possibility to verify the integrity of their

communication on FreeMessage.

FreeMessage is a service by GMX and WEB.DE. GMX and WEB.DE are

operated by 1&1 Mail & Media GmbH.

�16 FreeMessage Encryption White Paper, September 2016

mailto:review@freemessage.com
http://freemessage.com

